Prise en compte de la topographie dans un modéle de

Saint Venant a deux vitesses:
solutions stationnaires et schémas numériques

Nelly BOULOS AL MAKARY

W\ SCIENCES /
UNIVERSITE’PARIS&3SSORBONNE &%% .FSMP

UNIVERSITE Fondation Sciences

Mathématiques de Paris

14 Mars 2023

Nelly BOULOS AL MAKARY 14 Mars 2023 1/45



Motivation

AN

Figure — Floods in Haute-Garonne and Ariege, Figure — Sediment transport and Deposition of
France 2022 the Rhone River
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The free surface and incompressible Euler equations

Shallow water model

(W)

Nelly BOULOS AL MAKARY 14 Mars 2023 3/45



The free surface and incompressible Euler equations

Shallow water model

(W)

Shear Shallow water
model (SSW) [Gavri-
lyuk, lvanova et Favrie,
17]

Multilayer Shallow water model
(SW,) [Audusse, Bristeau, Perthame
et Sainte-Marie, 11]

Nelly BOULOS AL MAKARY 14 Mars 2023 3/45



The free surface and incompressible Euler equations

Shallow water model

(W)

Multilayer Shallow water model
(SW,) [Audusse, Bristeau, Perthame

et Sainte-Marie, 11]

Nelly BOULOS AL MAKARY

Shear Shallow water
model (SSW) [Gavri-
lyuk, lvanova et Favrie,
17]

Shallow water model with two ve-
locities (SW>) [Aguillon, Audusse,

Godlewski et Parisot, 18]

14 Mars 2023 3/45



The free surface and incompressible Euler equations

Shallow water model

(W)

Multilayer Shallow water model
(SW,) [Audusse, Bristeau, Perthame

et Sainte-Marie, 11]

Nelly BOULOS AL MAKARY

Shear Shallow water
model (SSW) [Gavri-
lyuk, lvanova et Favrie,
17]

Shallow water model with two ve-
locities (SW>) [Aguillon, Audusse,

Godlewski et Parisot, 18]

14 Mars 2023 3/45



The Shallow water model with two velocities

O¢h + 0 (1) -0
Oe(hU) + 0« (h(T® + 0°) + §h%) = 0 (SWs)
Orl + 0, (Td) =0

e h(t,x) € R, the water height
@ T(t,x) € R the vertical-averaged of the horizontal velocity
@ i (t,x) € R the signed standard deviation of the horizontal velocity

<
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The Shallow water model with two velocities

O¢h + 0y (hﬁ) =0
Oe(hT) + Oy (h(T® + 0°) + §h%) = (SW»)
O0¢ 0 + Oy (U ) =0
For & = hS, \
0¢(hS) + 0x(ThS) =0
For h > 0,
0S4+ 1dS=0
e h(t,x) € R, the water height
@ T(t,x) € R the vertical-averaged of the horizontal velocity
@ i (t,x) € R the signed standard deviation of the horizontal velocity
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The Shallow water model with two velocities

Orh + 0x(hT) =0
Oc(hu) + Ox(h(T* + 0°) + §m%) = — ghdZ (SW»)
uu

3tu + 8 ( ) = 0
For i = hS, \
0¢(hS) + 0x(uhS) =0

For h > 0,
0:S+10S5=0
t,x) € Ry the water height
t,x) € R the vertical-averaged of the horizontal velocity
t,x) € R the signed standard deviation of the horizontal velocity
the gravity
(x) the topography

Z(x)

[
2 X

(
(
(t,

h
u
1]
g
V4
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The Shallow water model with two velocities

8:h + O, (ha) =0
Oc(hu) + Ox(h(T* + 0°) + §m%) = — ghdZ (SW»)
For i = hS, \
0¢(hS) + 0x(uhS) =0
For h > 0,
S +10S=0

e h(t,x) € R, the water height
@ T(t,x) € R the vertical-averaged of the horizontal velocity
@ i (t,x) € R the signed standard deviation of the horizontal velocity
@ g the gravity
@ Z(x) the topography

Z(x)

[
2 X

/\ For i =0, we retrieve the classical shallow water model.
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Properties of the model

Mechanical energy
The mechanical energy reads

Ezgj+ﬁ(ﬂz+ﬁ2)
2 2 ’
and the associated energy flux is

—2 n2
G= <gh + u+23u> h.

The smooth solutions satisfy the energy conservation law
atE + 8XG = O

whereas discontinuous solutions are selected to satisfy the following energy
inequality condition
O:E +0,G <0.

A\ E is a convex function of (h, hu, hii) and not (h, ha, i).
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Properties of the model

Hyperbolicity
We consider the set of variables

The eigenvalues are given by

AN = T—+/gh+302
A= 1,
AR = U+ +/gh+ 302,

e U and hi® + %h2 are continuous through the A* —wave

is continuous through the external waves A, and Ag (even through the
shock)

SIS
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Content

o Steady State Solutions
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Steady State solutions of the model with topography

O¢h + Oy (hT) =0,
O¢ (hu) + O« (h (W + 0°%) + §h%) = —ghd,Z, (SW5)
O¢d + Ox(udd) =0.

We are interested in steady state solution in a bounded domain x € | = [x;, xg]
defined from its boundary condition.

We assume that there exists a point xg € | such that Z is a C* regular function,
increasing on [x, xo| and decreasing on [xo, xgr].

The Froude number : -
u

V/gh+ 302

subcritical if F, <1,
critical if F, =1,
supercritical if F, > 1,

F, =

The flow is

Nelly BOULOS AL MAKARY 14 Mars 2023 8 /45



Moving steady state solution

When the solution is C!

Hence, the three quantities
e hu

1 (2 ~2

o h+Z+ 5 (7% +30°)
e uil

are constant.
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Moving steady state solution

When the solution is C* At a point of discontinuity

The Rankine-Hugoniot jump

Oy (ha) =0, conditions :

O (h (T° + 0°) + §h?) = —ghd, Z, (ha] 0

O« (ud =0. y B

i (3 + %) + §17] -

Hence, the three quantities [ud] =0,

e hu The dissipation of entropy :

o h+Z+ 5 (0° +30°)

Tl ¢ w2 + 302
o uil [(g(h—i—Z)—i—T) hﬁ} <0,

are constant.

where [X] = XT — X~.
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Moving steady state solution

When the solution is C* At a point of discontinuity

The Rankine-Hugoniot jump

Oy (ha) =0, conditions :

O (h (T + 0%) + &h?) = —ghd, Z,

YAy i o

) (@ + %) + §4°] =
Hence, the three quantities a] =0,
ha TheAdissipation of entropy :
> (0% +307) .
(g(h+Z)+—” 30 )hn} <o,

are consta

\[ where [X] = X+ — X~
o= M
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Moving steady state solution

When the solution is C* At a point of discontinuity

The Rankine-Hugoniot jump
conditions :

[hd]

For @ # 0 and

Nelly BOULOS AL MAKARY 14 Mars 2023 9 /45



Moving steady state solutions

We fix M > 0 and S € R.

The Froude number rewrites
M
h\/gh+352h?"

We define the critical water height h. corresponding to F, = 1. Hence,

Fr=

3S%ht 4+ gh? —M?=0

The flow is supercritical if h < he, critical if h = h. and subcritical if h > h..
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Regular moving steady state solutions

Proposition
For a given M € R* | S € R, we define the function ® as
¢ : RExR — R
(h2) = h+Z+% (% +3rs?)

Then, the function x + h(x) is a C! steady state solution of (SWa) if and only if
there exists K € R such that

Vx e l, ¢ (h(x),Z(x)) =K

which is nothing more than the Bernoulli’s principle in our context.
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Regular moving steady state solutions

To define a C! solution on the interval /, we need to find for any x € I a solution h(x) of the
equation

2
O(h(x),Z(x))=K where &(hZ)=h+Z+ é (%+3h252).

h— ®(h,Z(x))

\f:_
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Regular moving steady state solutions

To define a C! solution on the interval /, we need to find for any x € I a solution h(x) of the
equation

2
O(h(x),Z(x))=K where &(hZ)=h+Z+ é (%+3h252).

h— & (h, Znax)

h— ®(h,Z(x))

Ke: = (hm Zmax) *********************

\f:_
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Regular moving steady state solutions

To define a C! solution on the interval /, we need to find for any x € I a solution h(x) of the
equation

2
O(h(x),Z(x))=K where &(hZ)=h+Z+ é (%+3h252).

h— & (h, Znax)

h— ®(h,Z(x))
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Regular moving steady state solutions

To define a C! solution on the interval /, we need to find for any x € I a solution h(x) of the
equation

2
®(h(x),Z(x))=K  where ¢(h,Z):h+Z+é(%+3h252).
h s D (h, Zomax)

h ® (h, Z (x))

Ke: = (hm Zmax) ******************

Kbab-r---A--------

\f:_

]
I
I
|
I
L
sy,
h P (X)hc hUb X
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Stationary shocks and the entropy condition

Definition

For a given M € ]Ri, S € R, we define the function F™ representing the momentum flux as

Ff# . R: — R
h = M p352 4 gp2

Fhﬁ
N

| |

| |

| |

| |

| 1 |

| | |

| | |

— | S

h hc Y (h)
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Stationary shocks and the entropy condition

Definition

For a given M € ]Ri, S € R, we define the function F™ representing the momentum flux as

e R}

3
h = M p352 4 gp2

F hu

N
7
| \

Proposition
non admissible shock
D For a given M € R} and S € R, we suppose that
h™ e R} and ¢ (h_) = h" are respectively the
water heights at the left and at the right of a
stationary shock. Then, the shock verifies the energy
dissipation if one of the equivalent conditions below
holds :

admissible shock

K'=o (h,2) <K~ :¢(h—,z)

| |
| |
| |
| |
| 1 |
| | |
l l l
h he ¥ (h) h™ < he < h*.
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Moving steady state solutions

...............

=" "7 == Zr + hiP (xe)

—/\ Z(X)
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Moving steady state solutions

subcritical solution A%

.........

---7 TT - Zr + hiP (xe)

NSO'Ution hfé’l’
Z(x)
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Moving steady state solutions

subcritical solution A%

.................. e LT Z 00 + he

TT - Zr + hiP (xe)
—/—'_\T'Critical50|uti0n hfélp
Z(x)

XK
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Representation of the eigenvalues for the different boundary

conditions

AE AENE AE A A AEAE NE AE A A
\/ ’/ [ >
XL XR XL XR
(a) Subcritical inlet and outlet boundaries (c) Supercritical inlet and subcritical
AE AE AE NP outlet boundaries
N Y AEAE S
X XR o= /=
XL XR

(b) Subcritical inlet and supercritical outlet
boundaries (d) Superecritical inlet and supercritical
outlet boundaries
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General steady state solutions for SW

Solutions with subcritical inlet boundary conditions [Swashes, 13]

M = 4.42m? /s, h(xg) = 2m M =0.18m%/s, h(xg) = 0.33m M = 1.53m"/s, h(xg) = 0.66m

Z(x) Z(x) Z(x)
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General steady state solutions for SW

Solutions with subcritical inlet boundary conditions [Swashes, 13]

M = 4.42m? /s, h(xg) = 2m M =0.18m%/s, h(xg) = 0.33m M = 1.53m"/s, h(xg) = 0.66m

@ What is the type of the solution for any parameter M and h?
@ s there another type of solution verifying the same boundary conditions ?

@ What is the type of the solution when we add S 7
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Construction of the stationary solutions

We fix M > 0 and S € R then, we can compute h., K¢, h;”(b and h;”".
With hy = h(x.) and hg = h(xg) we can compute

Ki=o(h,2), and Kgp=®(hg,Zg).

© |If a piecewise C* solution exists on /, then K, > K. and K, > Kg

©@ The transition from the subcritical to the supercritical is continuous and occurs only at the top of
the topography x = x¢ and with a critical hydraulic head K..

© The solution may contain at most one shock on each side of the domain.

[0
| hs & (h, Zmax)
w2 h— & (h, Z(x))
i\ I
I | I
Ke i= & (he, Zmm) p ot m oo oo -
1 | 1
Kfn-r---~~------ r-
I | I
| N L
] ] I
I | I
I | I
I | 1 \h
hie? (xhe B3P (x)
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General steady states with subcritical boundary conditions

at both sides of the domain

We fix one boundary condition of the form h(xg) = hg and we suppose that h(x;) > hc

.............

T Zr+ hP (xR)
Z(x)
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General steady states with subcritical boundary conditions

at both sides of the domain

We fix one boundary condition of the form h(xg) = hg and we suppose that h(x;) > hc

subcritical solution hfﬁf

V hg > hit

.............

-- T Zr+ B (xR)
Z(x)
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General steady states with subcritical boundary conditions

at both sides of the domain

We fix one boundary condition of the form h(xg) = hg and we suppose that h(x;) > hc

subcritical solution hj¢®
R sub
hr > hKc
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General steady states with subcritical boundary conditions

at both sides of the domain

We fix one boundary condition of the form h(xg) = hg and we suppose that h(x;) > hc

subcritical solution hfﬁf

V hg > hit

e | \\\“~~ZR+/7:(UCP(XR)
: Z (x)

XKr  Xshock
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General steady states with subcritical boundary conditions

at both sides of the domain

We fix one boundary condition of the form h(xg) = hg and we suppose that h(x;) > hc

subcritical solution hfﬁf

Vm>h7{“j’
Zi+ hi? (%)

) hr < hig?
.................. HZR+¢ (h;ucp(XR)

XKr  Xshock

® f(xx,) <0
f [XKR,XR] — R ("] f(XR) >0
% —~ FM (hngb (X)) — Fho (hféip (X)) @ fis strictly increasing on [XKR,XR}
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General steady states with supercritical inlet boundary

conditions

Subcritical outlet boundary conditions :

one shock at right one shock at left two shocks

Supercritical outlet

boundary
conditions :

one shock at left A formal analysis was done by
physicists to prove that the
shock at left is linearly non
stable in [Baines et Whitehead,

03].
20 __——Z

supercritical everywhere
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Uniqueness

B3P (w0) = p(hEh (o))

hi = v(h)

hr

Kp =K,

I I I I
0 0.002 0.004 0.006 0.008, 0.01 0.012 0.014 0.016

hr

Figure — Sketch of the different zones of solutions with supercritical boundary condition
at the left and subcritical boundary condition at the right for M =0.1, S=1, g =9.81
and Z (x1) = Z (xr).
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Content

9 Numerical schemes
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Description of the Godunov-type schemes

Godunov observed that U! define at each cell interface x;, 1 a Riemann problem
2

8:U + 8, F (U)

U (g U ifx<xa
(t"x) = Ur if x> xj 1

0

X
/\ Computing the exact solution of the Riemann problem at each interface and for each time
step is costly since it implies a fix point algorithm, see [Aguillon, Audusse, Godlewski et Parisot,
18]
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Description of the Godunov-type schemes

Godunov observed that U! define at each cell interface x;, 1 a Riemann problem
2

0

U ifx<xa
. 2
Ur |fx2x,-+§

8:U + 8, F (U)

Ut x) =

X

/\ Computing the exact solution of the Riemann problem at each interface and for each time
step is costly since it implies a fix point algorithm, see [Aguillon, Audusse, Godlewski et Parisot,

18]

The considered approximated Riemann

solvers are t
)\1 1 )\2 )\3
U=Us  if3<x, l
~ (X ~ . |
U(?,UL,UR) = {0 i < X< A1 U ‘ i

. |
UR:UNJr% If%>)\/\/. |

o X

14 Mars 2023 22 /45
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Description of the Godunov-type schemes

© The external waves of the approximated solution have to be faster than the
external wave speed of the exact solution

AL = min (HL —CL,UR — CR),
AR = max (EL +c,ur + CR) ,
where cx = \/ghx + 30%.
@ The time step has to satisfy the following CFL condition
A
(max|AT,, |)At < —X
g Jyit+ 2

where A7 1= Ai(U7,URLy).

© The scheme has to satisfy a consistency property in the sense Harten and Lax
showed in [Lax et al, 83]

o G- oy AP TR P
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The HLLg approximate Riemann solver

To determine the seven unknowns (hZ,U’L‘, ﬁZ), (h;“?,ﬁ’;—\,, ﬁ,*?) and \*

@ we consider the consistency
relations (3 equations)

@ we impose the continuity of U
through the A\*—wave

—k ok Yk
U =up=A\".

. L a
@ we impose the continuity of — on

the external waves \; and A\r

o of
 x
h hr

g 0%

and = .
hgp h
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The HLLg approximate Riemann solver

To determine the seven unknowns (hZ,U’L‘, ﬁZ), (h;“?,ﬁ’;—\,, ﬁ,*?) and \*

@ we consider the consistency
relations (3 equations)

@ we impose the continuity of U
through the A\*—wave

—k ok Yk
U =up=A\".

. L ]
@ we impose the continuity of — on

the external waves \; and A\r

1} af 1] 0%
% g HR_ER
h; hy hgr b}
For hy > 0 or hg > 0, we are able to prove that
@ A\ < AN =Ty < AR

N
he = he ()\L_ifw) ) [AWG — h(@® + 0?) — £ 1?]
L~ UHLL with UHLL = — 2
. AR — UR h(A—1)]
hR =hgr | —— ),
AR — UpLL
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The HLLg approximate Riemann solver

To determine the seven unknowns (hZ,U’L‘, ﬁZ), (h;“?,ﬁ’;—\,, ﬁ,*?) and \*

@ we consider the consistency
relations (3 equations)

@ we impose the continuity of U
through the A\*—wave

—k ok Yk
U =up=A\".

. L a
@ we impose the continuity of — on

the external waves \; and A\r

1} af 1] 0%
% g HR_ER
h; hy hgr b}
For hy > 0 or hg > 0, we are able to prove that
@ A\ < AN =Ty < AR

N —T
hr=h ()\ L_i’-’L )7 [\AT — h(@ + i) — £12]
L~ UHLL with UHLL = — 2
. AR — UR ) [h(A—1)]
hg =hg | ———— ),
AR — UpLL

A\ The scheme is equivalent to the Siliciu scheme proposed in [Bouchut, 04] and the
3-waves ARS proposed by [Chandrashekar, Nkonga, Meena et Bhole, 20]
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The HLLg approximate Riemann solver

Properties of the scheme

@ Preserves the positivity of the water heights.
@ Satisfies the maximum principle on S.

o Satisfies the preservation of the stationary contact discontinuity where 7 =0
and hi® + £ h? is constant.

@ Verifies a discrete energy inequality of the scheme?
If there exists a numerical energy flux G (Ur, Ur) which is consistent with the
exact energy flux, i.e G (U, U) = G (U) such that

. n n At” n
viez,¥neN, E(Urt) - E(U)+ 5 (6r.:-975) <0, ()

where
fa =0 (U U).
A\ E is a convex function of (h, hu, hd) and not (h, hu, i)
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The HLLg approximate Riemann solver

U,

——0—9

Ur

*——o—0—

More precisely, if (1) is verified then, it is necessarily true in the two cells
separating the discontinuity. In other words, for one time step, we have

{E<uz>E<u2> %(cg G(19)) <
E(UR) —E (U8) + 5% (6 (uB) - g)_

+
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The HLLg approximate Riemann solver

U,

——0—9

Ur

*——o—0—

More precisely, if (1) is verified then, it is necessarily true in the two cells
separating the discontinuity. In other words, for one time step, we have

E(Uf) - E(U])
E(Ur) - E(UR)

-

BBt = E (UR) + E (U]) - (E (UR) + E (UD)) + 5 (G (U8

Nelly BOULOS AL MAKARY
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Properties of the

scheme

max(@r, Ur)

= non-dissipative
~ dissipative

x

Nelly BOULOS AL MAKARY

min(ar, ig)

1.6 1.8
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Numerical schemes for the model with topography

We consider now the set of variables
W = (h, ha, 4, Z).

eSchemes that are accurate on the contact discontinuity while verifying a
well-balanced property for all regular steady states of the system (SW5).
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Numerical schemes for the model with topography

We consider now the set of variables
W = (h, ha, 4, Z).

eSchemes that are accurate on the contact discontinuity while verifying a
well-balanced property for all regular steady states of the system (SW5).
The C! steady states of (SW,) system are governed by

8X (hU) =V, hﬁ = M7
Ou (h (T + %) + §h%) = —ghdZ, = { © +3C 4 g(h+2) =K,

For all W, = (h[_, h g, dy, ZL) and Wgr = (ﬁR, hrUR, UR, ZR) at steady state, the
well balanced approximate Riemann solver W should verify

W(57WL,WR): Wi !f?<01
t Wr if ¥ >0.

Nelly BOULOS AL MAKARY 14 Mars 2023 28 /45



Numerical schemes for the model with topography

Now we have an additional wave which is the stationary wave g due to the
presence of the topography

AL Ao AR

@ To preserve the order of the waves, we choose the following two external
waves

X

AL = min (UL — CL,UR — CR, 0)7
Ar = max (T + ¢, Ur + g, 0),
@ The consistency relation now reads

N
F(Wg) — F(WL) — Dx- B (Ax, At", Wi, Wr) = 3 (V"VH% - WJ._%) .
j=1

where B is a numerical approximation of the source term verifying

B ax—o ~ —ghAZ.

WL,WR—>W
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Numerical schemes for the model with topography

Existing works
o [Berthon et Chalons, 16]
@ [Michel-Dansac, Berthon, Clain et Foucher, 17]
o [Berthon, M'baye, Le et Seck, 21]

Nelly BOULOS AL MAKARY 14 Mars 2023 30/45



Numerical schemes for the model with topography

Existing works
o [Berthon et Chalons, 16]
@ [Michel-Dansac, Berthon, Clain et Foucher, 17]
o [Berthon, M'baye, Le et Seck, 21]

Nelly BOULOS AL MAKARY 14 Mars 2023 30/45



Numerical schemes for the model with topography

Existing works
o [Berthon et Chalons, 16]
@ [Michel-Dansac, Berthon, Clain et Foucher, 17]
o [Berthon, M'baye, Le et Seck, 21]
o [Berthon, Desveaux, Klingenberg et Zenk, 16]

o [Desveaux et Masset, 21|
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Numerical schemes for the model with topography

Existing works
o [Berthon et Chalons, 16]
@ [Michel-Dansac, Berthon, Clain et Foucher, 17]
o [Berthon, M'baye, Le et Seck, 21]
o [Berthon, Desveaux, Klingenberg et Zenk, 16]
o [Desveaux et Masset, 21|

Let us introduce the quantity (steady state indicator)
eLr = |Kr — K| + |Mg — M| + |Sr — 51

The smooth steady state solutions of (SW») for a Riemann problem are then
characterized by
€ELR = 0.
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Source term discretization

Suppose that h; > 0 and hg > 0. We define

_ — = hL—|—hR ~ le_1 52/_7
M2 = MM, $2 = |S.S pohthe g _35%h
ML Mg| , |SLSR] , 7 hms = cpEne E

When IE,;,MS # 1 or e r #0, let us define an approximation of the interface topography
source term by

- _ M2 G2 _ _ 2
AX-BM:—gh(ZR—ZL)+( M > ) (he = hu) (Zr = Z1)"

212 a4 -~ 2
4thR 4 (1 . FE,M,S) Yer

@ consistent with —ghd,Z
@ vanishes for a flat topography
@ is adapted for the construction of well-balanced schemes.
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The HLLy scheme

We introduce the following notation AL Ao AR
Wi We
AhHLLEHLL,é = ()‘R - )‘L) hui tp + Ax - B. Wi Wr 3
The integral consistency relations imply
Arhp —Ahp = (Ar — AL) hhue,
)\Rh,"?u;‘? — )\Lh;_*ut = AhHLLHHLL,é’
ARUR — ALlf = (Ar — AL) Ohee,

We consider that the states L* and R* verify through the contact discontinuity Ao, a discrete
version of the smooth steady state solutions

[ha] R =0,
[h (@ + 02) + £m2]F. = Ax- B,
[aa]R: =0
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The HLLy scheme

We introduce the following notation AL Ao AR
Wi We
AhHLLEHLL,é = ()‘R - )‘L) hui tp + Ax - B. Wi Wr 3
The integral consistency relations imply
Arhp —Ahp = (Ar — AL) hhue,
)\Rh,"?u;‘? — )\Lh;_*ut = AhHLLHHLL,é’
ARUR — ALlf = (Ar — AL) Ohee,

We consider that the states L* and R* verify through the contact discontinuity Ao, a discrete
version of the smooth steady state solutions

[hu] - =0, htig = hiu} .= M,

[h(+ ) + 407 =ax- B = ¢ |
~A—1R* £ = gE T :

[aa =0 woE
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The HLLy scheme

We introduce the following notation AL Ao AR
Wi W
b, B = (AR — AL) AHL U + Ax - B. Wi Wr
X

The integral consistency relations imply

)\Rh,}: ALk} = (Ar — AL) byt

)\RQRU )\Lh o = AhHLLHHLLaé’A

ARUR — ALlf AR — AL) Ohie,

We consider that the states L* and R* verify through the contact discontinuity Ao, a discrete
version of the smooth steady state solutions

ol “o e
[h(@+0%) + 8% = ax- B, — { M2[]L +52[R]L +5[R]L = ax-B,
~1R* _ O =4 ._ gx
[da] s =0 B TR .

Then, the sixth relation is

. (e 72 RAX- B
hf —hf)=C 5 th C fim ————.
(hr — hr) oL B wi oLk B aiRJFEL.R
and
—M?2 = 5
arR= 77— +72 (hR+hL)+5 (h% + hLhg + 7).
h.hg
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The HLLy scheme

Well-balanced version of the HLL; scheme
For, hy > 0 and hg > 0, the HLLy scheme defined by

h = huu — P _L’;;)y
L%q, ,B
hg = huw — ﬁ,
b Trs + Ax- B
L HLLUALL +
i} = = : (HLLo)
L
_ Ax-B
huLLUper + SV
Uk = =,
I R
u, = UHLLm,
e ke
Or = O g%,

Proposition

Suppose that ¢, g = 0. Then, with the approximation of the source term defined earlier,
we have

WZ = WL and WE = WR
and the HLLo scheme is well-balanced
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The HLLy scheme

Positive and well-balanced version of the HLL, scheme

Our strategy is to test the positivity of the quantities h~z and hNE, defined by

~ AR’ColL’R,.‘é ~ ALCOCL,I%B

hi = hue — Cr =) and hy = hue — CYESwE

Then, the correction is interpreted as the solution of a new ARS with vanishing intermediate states.

@ The case h;’_‘ > 0 and h~,’f(, > 0 then,the intermediate states defined in (HLLo).

@ The case h* < 0 and hN; > 0 then, the @ The case h* > 0 and h~,’5 < 0 then, the
scheme is cfefined by scheme is Jefined by

hf =0, pr— AR = A1) bt
B — (AR = AL) hrie L=~ AL ’
R= " >_ x

. AR hg =0,

up =0, — AhHLLUHLLvé

E; _ AhHLLﬁHLL,é Y= )\Lhz ’

ArhY 7 s =0,

ar =0, o (R =AL) Ot

o — (Ar = AL) Onie o =-— A )
R AR ’ ip =0.
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The HLLyz scheme

Here we propose a second 4-waves ARS that is a mixture between HLLy and HLL5.

AR AL

Wgr

Wy

X

Figure — The waves representation of the HLLo 7 approximate Riemann solver with
A* < 0 on the left and A* > 0 on the right.
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The HLLyz scheme

@ Similarly to HLLz, we impose the continuity T across the transport wave.

N = T =dg if A* <0,
T =Ty ifA*>0.
o Similarly to HLLgy, we consider the Riemann invariant across the stationary
wave

(heas, aeig) — 4 (MRUR TROR) TF AT <0,
070,070 (hrw,uiay) A" >0
@ We consider the consistency relation
@ The linearization across the stationary wave implies

(k) WA <0,
oLrB Y (e — hE) i A >0

. o ]
@ We impose the continuity of 7 on the external waves A\ and Ag

O, oy

ir 0
=L Ir
h h

d —=-=
an he  hE
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The HLLyz scheme

Proposition

Assume that hy, hg, h}, h§ and h} are positive. Suppose that A\ < X\* < Ag

. —k  —k — E H ~
therefore, the sign of U], Ug, U and \* is the same of the sign as A, . 5.

Well-balanced version of the HLLj ; scheme

Assume that h; > 0, hg > 0 and A\, < A* < Ar. Assume that the previous
proposition is verified. Then, the system admits a unique solution

* * k =k —k —x Ak Ak Ak * 10
( LahOvthuL7u07uR7uLau0auR7/\ )GR .

For W, and Wg defining a smooth steady state, if hy > 0 and hg > 0 then, the
scheme satisfies the well-balanced property.

Nelly BOULOS AL MAKARY 14 Mars 2023 38 /45



The HLLyz scheme

Proposition

Assume that hy, hg, h}, h§ and h}, are positive. Suppose that A\ < \* < Ag

. —k  —k — E H ~
therefore, the sign of U], Ug, U and \* is the same of the sign as A, . 5.
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Content

e Numerical results
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Dam break problem

0.4 03 02 01 0 [ 02 03 04 05
x
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N 4
os| 4
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05 04 0.3 02 0.1 0 [ 02 03 01 05
x
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10 101
10!
Rt g E e
g g 107 g
B X
10 103
10
10°¢ 10°° 10t 10°% 102 0% 107 10" 0% 102 107" 10°° 10t 10 102
Ax Az Az
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Numerical stability of the stationary solutions

Setting the parameters
e | =]0,25]
2
@ Z(x) = max (O, 0.2 -0.05(x — xo) ) ,
e M=12m/s and S = 0.5m/s.

Initial Conditions

@ When the inlet boundary conditions are subcritical, the initial conditions
satisfy the lake at rest , i.e

h+ z = hg, M=0 and S=0.

@ When the inlet boundary conditions are supercritical, the initial conditions are
chosen to be the analytical solution.
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Subcritical solution

h+2Z

‘*Topography «EXACT HLL; - HLLj - HLL4

/\
8 o 10 1 12

T

Figure — Free surface and topography for the subcritical solution

h+2Z M S
HLLy | 5.6e—14 | 2.02e — 14 | 2.7e — 14
HLLj 6e — 14 17e —14 | 3.2e—14
HLLyg | bde—14 | 19e—14 | 3.2e —14

Table — Free surface, discharge and shear errors for the subcritical solution
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Transcritical solution with shock

1.2
1
0.8

0.6

h+Z

0.4

T |—Topography - EXACT - HLLy - HLL; - HLLy,|

11 12

Figure — Free surface and topography for the transcritical solution with shock

h+2Z M S
HLL, | 8.6e—03 | 1.9e — 03 | 1.45e — 10
HLL; | 8.6e—03 | 1.9e — 03 | 1.45e — 10
HLLyz | 9.1e —03 | 1.8e — 03 | 8.71e — 16

Table — Free surface, discharge and shear errors for the transcritical solution with shock
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One shock at left solution

T [ Topomraphy —BXACT _HLL, + HLL; ~ HLL,

T

Figure — One shock at left solution for supercritical inlet and subcritical outlet boundary

conditions

h+2Z M S
HLLy | 45e—03 | 5.1e — 03 | 2.06e — 10
HLL; | 45e—03 | 5.1e — 03 | 2.06e — 10
HLLyz | 47e —03 | 4.4e — 03 | 2.06e — 10

Table — Free surface, discharge and shear errors
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Conclusion and perspectives

Conclusions
@ Analysed the C! piecewise steady state solutions
@ Proved the (Non) existence and (non) uniqueness of steady state solutions

@ Constructed approximate Riemann solver for the homogeneous model and the
model with topography

@ Studied numerically the non-stability of the solutions with a shock at the left
of the bump

Perspectives

@ Understand the origin the non-entropic stationary shock obtained with the
HLLy 7 scheme for the transcritical solutions and then try to correct it.

@ Develop schemes that satisfy the dissipation of entropy.

@ Study the numerical effect of the friction source term on the solutions with a
shock on the left of the bump, see [Defina, Susin et Viero, 08].
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Regular moving steady states solutions

For K < K.
0]
T hi= & (h, Zuax)
|
|
|
|
l
l h— & (h, Z(x))
|
Kl immmmmm
l
K,,,,‘ ,,,,,,,,,,,,,,,,
|
|
l
: \h
he ’
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Regular moving steady states solutions

For K < K.
0]
T hi= & (h, Zuax)
|
|
|
|
l
1 h— & (h, Z(x))
|
KV his  (h, Z (x))
|
P
l
— |
Ki=®(he,Zy) - ,
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Regular moving steady states solutions

For K < K.
0]
T hi= & (h, Zuax)
|
|
| h—s & (h, Zg")
|
| h— @ (h, Z (x))
|
Kcb- - o= s -~
¢ | h— & (h,Z(x
Ze [Z;Iém7zmax] : ! ( ( L))
no solution |
K - - - T T T T T T (I
V4 c [ZL, Z;Iém] : I : :
two distinct solutions : : :
— | | |
KL :=®(he, Z1) | 737 -t - - - T ffffffff \h

|
hi? (<) he hig® (x)
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Existence

hy = h(x1) < hc fixed at the inlet and hg = h(xg) > hc fixed at the outlet

Zr + h;”cb (XR)

Ze+ 0 (hP (xw))

Zr + ’l/) (hfgcp (XR))

Zr + h;uLP (XR)

v Zu+ 1 (B (x)
Z (x)

Xo



Existence

hy = h(x1) < hc fixed at the inlet and hg = h(xg) > hc fixed at the outlet

_4L hf(UCb (XL ZR + hf(Lle (XR)
I - --T T
1 \<=§§\ /,/"
:: Ze+ v (B (xw) )
e f"‘; ............... |
33 ..................... ///, §§§Q ................. — T\ZRJFQ/)(I-’;JCP(XR))
_________ » . )
| Z+ BPAxi) Teso i

- |

v Zu+ 1 (B (x)
Z (x)

Xo



Existence

hy = h(x1) < hc fixed at the inlet and hg = h(xg) > hc fixed at the outlet

Zr + hfélcb (XR)

v Zu+ 1 (B (x)
Z (x)

Xo
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Introduction

Lemma (Aguillon 18)

If G # 0, the 2D shallow water with two velocities is strictly hyperbolic. More
precisely, the eigenvalues are given by

AL <L S A <R < Ag.

The eigenvalues are given by

M = T-+\/ght3@
A= 1,

AR = T+ +/gh+302,
o= u—|dl

Yy = T+
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Description of the Godunov-type schemes

Finite volume framework

@ We consider a uniform discretization of the computational domain

® We denote C; =]x;_1,x;,1[ the cell of length Ax = x;, 1 —x;_1 and
centered at x;

@ For any time t", we define t"™1 = t" + At" with At" satisfying a CFL
condition to be described later

@ Let U be a piecewise constant approximation of U(x, t) at time t” on the
cell G;

@ We propose the following update formula

At
VieZneN UMt = U T (Fhy - Fy),

1 tn+1
’1%%@/ F(U(t,x,-+%>)dt.
tn

The initialization of the algorithm can be computed with

where

1 Xi+d
VieZ U?= A / U(x,0)dx.
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The HLL approximate Riemann solver [Lax et al, 83]

AL AR
U, if <AL UniL
UHLL (%, U, UR) = Uy ifA < % < AR, U, Ug
U %> e, .

The consistency with the integral form of the conservation law leads to the
following intermediate states

R (o)
HLL o
_ [Aht — h(T° + 0%) — §h?]
hHLLUHLL = 0 ,
N ()]
[A]

Properties of the scheme
@ Preserves the positivity of the water heights.
@ Satisfies the maximum principle on S.
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The HLL approximate Riemann solver

Discrete energy equality of the scheme

According to [Bouchut04], a scheme verifies a discrete energy inequality associated
to an energy E, if there exists a numerical energy flux G (U, Ur) which is
consistent with the exact energy flux, i.e G (U, U) = G (U) such that under some
CFL condition, the discrete values computed by the scheme automatically verify

, sy e D7 ,
vieZvneN, E(U) - E(U)+ T (97, -0r,) <0 ()

where
B =0 (U, U

A\ E is a convex function of (h, hu, hii) and not (h, ha, 0)
The case {; = g = 0 : In this case the energy is convex and it was proven in
[Bouchut, 04] that the HLL scheme verify the dissipative energy inequality.
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The HLL approximate Riemann solver

More precisely, if (3) is verified then, it is necessarily true in the two cells. In other
words, for one time step, we have

E(U}) - E(U9)+4% (93 -63) <o,
E(U3) -~ E(U9) + 5% (98 - 3) <o,
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The HLL approximate Riemann solver

More precisely, if (3) is verified then, it is necessarily true in the two cells. In other
words, for one time step, we have

{E(U%)—E(Ui’)+%i" (2 -92

2

)
-g3) <o,

2

<o,

E(U3)

NOO NIWO

AE® = E (U3) + E (Uf) — (E (U8) + E (UD)) + % (g8 -48) <o (4)

where G = G (UJ}) and G = G (U}) due to the consistency with the exact
energy flux.
The case & # 0 and g # 0 : We conclude through the numerical results that the

HLL scheme verifies (4). In this case, we might think that is dissipative even if it
is very diffusive on the transport wave.
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The HLL approximate Riemann solver

: X | —EXACT —100 —1000 — 10000
ne =
s R
= M
. ]
e ]
1 | | 1 1 1 1 |
i W 02 or 0 o 0 v o
X
1 T T
i ]
3
o ]
| | 1 1 | K
i W5 0 m 0 or 0z v o
X
e ]
s ]
" L L L L L L L
i r 02 e 0 o1 > o o
X

Figure — Dam Break case : Plots of the variables using the HLL scheme for 100, 1000
and 10000 points.
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The HLL* approximate Riemann solver

@ The quantity % jumps only along the intermediate contact discontinuity. In
fact, from (SW5), we can deduce that for regular solutions

at(%)max(%) =0.

@ The HLL scheme is used to update only the classical shallow water variables
(h T) and to compute the interface mass and momentum fluxes 7/}, and
Fiils-

@ The shear velocity i is updated using an upwind strategy

0 I h+ l+1
F{HLL,up,i+§} ]:{HLL i+ } ‘F{HLL i+1y’
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The HLL* approximate Riemann solver

A*

U if X<y, A
~ X L T AL < 3 <A, HLLUHLL HLLYUHLL
UHLL*(? U, Ug) = t a; fid

Ur if5\<%<)\R, <hL)
hLAEL

hr
. hgrU,
Ur if % > AR. IBRR

N———

up

To construct the numerical scheme
© we consider the consistency relations

© we impose the continuity of h and T through the A*—wave

k Pk —k =k
[ =hp and u; = Up.

. o i
© we impose the continuity of 7 on the external waves A\, and Ag

a.  af

r 0
— = and — = —f.
he  h} hr  hg
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The HLL* approximate Riemann solver

For Z—g #+ Z—t the intermediate states are

hi = hue,
hg = hui,
Up =Ty,
Up = UHLL,
. .~ haLL .
i = == (HLL*)
L
e~ hho
UR = —_,
hr
. hr (A\r —TR)
A= Agp —
hure

If Z—g = Z—t we get 0] = {f = Oy and we choose A* defined above.
In addition, we have

0 A\ <A< AR

o sgn(Fip.y) = sgn(\*)

° ‘F?HLL,up} = Flus-
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The HLL* approximate Riemann solver

Properties of the scheme

Preserves the positivity of the water heights.
Satisfies the maximum principle on S.
Is not able to maintain an isolated contact discontinuity.

Is equivalent to the HLL scheme for i =0

Doesn'’t verify the discrete entropy inequality
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The HLL* approximate Riemann solver

\ T T T T — i —

0.3 0.2 0.1 0 0.1 0.2 0.3

0.3 0.2 0.1 0 0.1 0.2 0.3

0.3 0.2 0.1 0 0.1 02 0.3

Figure — Dam Break case : Plots of the variables using the HLL and HLL* scheme for
1000 points.
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Numerical results

To ensure that the CFL condition is satisfied, we set

Ax
At" = QCFL o= ) M= max <|)"L77,'+%|a |>"i-’?)i+% |)

with 0 < acg < 1. In the following, we set acr = 0.9.

We compare the solutions computed by the several schemes with the analytical
solution of the Riemann problems, see [Aguillon et al, 18]. In addition to that, for
a domain discretized with nx cells we compute the L? errors using the following
expression

nx

2= | L > (Ui - Ug)?

nx 4
i=1

where U; and U are respectively the approximate and the exact solutions at the
cell G; and at the physical time tepg.

Nelly BOULOS AL MAKARY 14 Mars 2023 14 /33



Numerical results

o8 —EXACT
= —HLL
o —HLL
04 I I I I I I I I —HLL:
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
x
2 T
b i
= OF B
bk i
,L / il
! I I I I 1 1 1
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
x
3 T
25 B
2l i
e
150 B
] i
I | e I I I I I
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
x

Figure — The two rarefactions case. Plots of the variables using HLL, HLL* and HLLz
solvers for 1000 grid cells
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Numerical results

[[nx errHLL orderHLL __ ercHLL® orderHLL™ errHLL; __ orderHLL; ||
10° 3.6e-02 - 3.8e-012 - 3.8e-02 -
10° 1.1e-02 0.56 9.7e-03 0.59 9.6e-03 0.59
10” 3.3e-03 0.47 2.9e-03 0.51 2.9e-03 0.51
10° 1.5e-03 0.34 1.2e-03 0.39 1.2e-03 0.39
10° 8e-04 0.26 6e-04 0.28 6e-04 0.28

Table — Height error and order of accuracy for the two rarefactions problem

[ nx errHLL orderHLL _ereHLL™ orderHLL™ errHLL;  orderHLL; ||
10 1.6e-01 - 1.6e-01 - 1.6e-01 -
10° 4.4e-02 0.57 4.4e-02 0.55 4.3e-02 0.56
10" 1e-02 0.63 1e-02 0.63 1e-02 0.62
10° 2.1e-03 0.7 2e-03 0.7 2e-03 0.69
10° 3e-04 0.73 3e-04 0.73 4e-04 0.73

Table — Mean velocity error and order of accuracy for the two rarefactions problem

[ nx ercHLL orderHLL __ereHLL™ orderHLL™ errHLL; _ orderHLL; ||
10 1.1e-01 - 1.1e-01 - 1.1e-01 -
10° 3.3e-02 0.49 3.1e-02 0.55 3e-02 0.55
10" 1.5e-02 0.35 1.2e-02 0.41 1.2e-02 0.41
10 8e-03 0.26 6e-03 0.27 6-03 0.27
10° 4e-03 0.25 3e-03 0.25 3.5e-03 0.25

Table — Standard deviation error and order of accuracy for the two rarefactions problem
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Numerical results

I I
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure — Dam break problem with change of sign on . Plots of the variables using HLL,
HLL* and HLLg solvers for 1000 grid cells
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Numerical results

T
— EXACT =——HLL =—— HLL" —— HLL;

0.5 0 0.5
X

Figure — Dam break problem with change of sign on . Plots of the hii® using HLL,
HLL* and HLLz solvers for 1000 grid cells
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Numerical results

[ nx errHLL orderHLL ercHLL™ orderHLL™ errHLLy orderHLL; ||
10° 8.8e-02 - 6.6e-02 - 6.8e-02 -
10° 5.3e-02 0.24 3.8e-02 0.3 3.8e-02 0.31
107 3.1e-02 0.24 2.2e-02 0.24 2.2e-02 0.24
10‘ 1.7e-02 0.24 1.2e-02 0.24 1.2e-02 0.24
10° 9e-03 0.25 7e-03 0.25 7e-03 0.25

Table — Height error and order of accuracy for the Dam break problem with change of
sign on

[[mx errHLL orderHLL errHLL™ orderHLL™ errHLL; orderHLL; ||
10 2e-01 - 1.4e-01 - 1.4e-01 -
10° 1e-01 0.23 5e-02 0.32 6e-02 0.29
10° 6e-02 0.21 4.2e-02 0.2 4e-02 0.21
10° 3e-02 0.24 2.4e-02 0.22 2.5e-02 0.22
10° 2e-02 0.24 1.4e-02 0.24 1.4e-02 0.24

Table — Mean velocity error and order of accuracy for the Dam break problem with
change of sign on @

[ nx errHLL orderHLL errHLL™ orderHLL™ errHLL, orderHLL, ||
10 4.1e-01 - 2.8e-01 - 2.9e-01 -
10° 2.3e-01 0.24 1.6e-01 0.31 1.6e-01 0.3
107 1.3e-01 0.25 9e-02 0.25 9e-02 0.24
10° 7e-02 0.24 5e-02 0.24 5e-02 0.24
10° 4e-02 0.24 2e-02 0.24 2.e-02 0.24

Table — Standard deviation error and order of accuracy for the Dam break problem with

a aler-Wa\ - a
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The main objective of this work is to derive numerical schemes that
© preserve the positivity of the water height
@ preserve the maximum principle on § = ;
© are accurate for the transport process associated to the shear velocity

@ are accurate on the contact discontinuity while verifying a well-balanced
property for all regular steady states of the system (SWa).

To do so we
@ approximate the source term

o we extend the numerical schemes constructed for the homogeneous model to
adapt with the presence of the stationary wave
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Steady states solutions

The C! steady states of (SW5) system are governed by

0y (ha) =0, hi =M,
O (h (W% + %) + §0°) = —ghd Z, = { T +3L +g(h+2) =K,
0, (@) =0 o = MS.

For all Wy = (hy, hydy, 4y, Z;) and Wg = (IJR, hrlg, g, Zr) at steady state, the
well balanced approximate Riemann solver W should verify

W(iaWL,WR): Wi !f?<0'
t Wgr if ¥ >0.

Let us introduce the quantity (steady state indicator introduced first by [Berthon
et al, 21])
eLr = |Kr — K| + |Mg — M| + |Sr — 1.

The smooth steady state solutions of (SW5) for a Riemann problem are then
characterized by
6[_7R == O
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Source term discretization

Proposition

Suppose that W, = (U, Z;) and Wg = (Ugr, Zr) define a smooth steady state
solution . The approximation of the topography source term ensures the relation

R
Ax. BM = M2 HL 52 [w]F + & [

which is a discrete version of the second equation of the regular steady state
solutions.

The approximation of the source term
@ ensures the relation
R
= 1 R & R
M _ a2 273 2
Ax-BM=M ML+5 [h]L+§[h]L.
which is a discrete version of the second equation of the regular steady state
solutions for W = (U, Z;) and Wgr = (Ug, Zr) defining a smooth steady
state solution
o is ill-defined if F s =1 and e, g = 0. Then, as in [Berthon, 21], we choose



The HLLy scheme

This approximate Riemann solver is an extension of the HLL scheme to take into
consideration the stationary wave. This solver is similar to the scheme initially
proposed for the shallow water equations with topography in [Berthon et al, 16].

Ao
AL AR
Wr |We
W, Wg

@ In this scheme and in this work we choose to impose that the topography is
only discontinuous on the stationary wave, i.e Z = Z; and Z} = Zg.

e We have six unknowns : W} = (h}, hidy, 4f) and Wp = (h, hiug, O0%).
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The HLLy scheme

We consider a linearization as done in [Berthon et al, 21]

iy _ ~
(h . +g(hR+hL)+52(h2R+thR+hf)) (W — h;) = Ax - B.
LR

or equivalently
2

. —M
apr(hg —h})=Ax-B, where o r= hihr

+ %(hR+hL)+§(h%+thR+hf)~
So, for a; r # 0 or €, g # 0 the above relation is replaced by

(O‘E,R + €L,R) (h; — hZ) = OéL’RAX . B.

and we define

(7} RAX . é
CaL - -
R Al R +€LrR
Then, the sixth relation is
* *
(hg — h) = CaL,RJé'

A\ When a; g = ¢, g = 0 we choose to impose
(hg — hf) = (hg — hy).
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The HLLy scheme

The linearization (24) is ill-posed for oy r = €, g = 0. After straight forward computations, we
get

. . o rOAx - B
lim o I|mo’7 :/'IR—I'IL7
aL,R—0 €LrR— (aiR + eL,R)
but .
. . a; RAx - B
lim lim : =0.

5L,R‘>0 aLyRHO (aiR"'EL,R)

Here, as in [?], when o gr = €, g = 0 we choose to impose

(hg — h[) = (hg — hr).
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The HLLy scheme

Other correction strategies

The strategy proposed by [Audusse et al, 15] consists on

@ setting the intermediate water height and the standard deviation to zero

hk* - 07
Mk* - M*7
ke =0

where k corresponds to L or R depending on the state of the negative quantity.
The strategy proposed by [Berthon et al, 21] consists on

@ introducing a parameter y such that
0 <~ < min(hg, hg, hxre) -

@ setting hy. = 7 and to consider the consistency relations and the first and
third equilibrium relation.
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The HLL approximated Riemann solver

@ A first possibility is to construct a HLLj solver using an upwind strategy.

@ A second possibility is to interpret the scheme as a four waves ARS.

AR AL

Wg w,

X

Figure — The waves representation of the HLLg approximate Riemann solver with \* < 0
on the left and A* > 0 on the right.
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The HLL approximated Riemann solver

@ We consider the consistency relation
@ Similarly to HLLgy, we consider the Riemann invariant across the stationary
wave
w@,wm—¥%*”¥“f“““’
(hiay,wpaf) ifA*>0
@ The linearization across the stationary wave implies

C fp =R i<,
oLrB Y (e — hE) AT >0

@ Similarly to HLL*, we impose the continuity of h and T across the transport
wave.
. (b}, ;) if A* <O,
(ho, ug) = £ oy
(hg,TR) fA*>0

. . a
@ We impose the continuity of — on the external waves \; and \g

h
a, ay ar  Of
bo_O0 g ROk
he  hf hr  hg
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The HLLj scheme

Well-balanced version of the HLL} scheme

Assume that h; and hg are positive. For Z—g + % the left and right intermediate

states are given by

Nelly BOULOS AL MAKARY

ARC, &
hi = htee — Cr— D) :’;’L),
LYa, r,B
h?;\’ = huiL — ﬁ’
b + 2 B
. HLLUHLL e — N
u, = e ’ (HLL*)
L .
- Ax- B °
huL T + m
U*R = h* ?
R
N O,
UL = EhL?
e OrR o,
UR = EhR,

14 Mars 2023 29 /33



The HLLj scheme

Well-balanced version of the HLL} scheme

Assume that hj > 0 and hg > 0.
@ Suppose A* > 0 then,

_ )\Rh:f? — hgp ()\R — UR)

)\*
hi

>O<:>)\Rh;k?th(/\RfﬂR)>0,

@ Suppose A\* < 0 then,

_ )\Lht - h ()\L — UL)
hi

A" <O<=>)\/_ht—h1_(>\1_—ﬂL)<0,

But, the consistency relation on the water height implies

)\[_ht — AN h +Th = )\Rh;% — Arhgr + Ugrhg.
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The HLLj scheme

Well-balanced version of the HLL} scheme

Assume that hj > 0 and hg > 0.
@ Suppose A* > 0 then,

_ )\Rh:f? — hgp ()\R — UR)

)\*
hi

>O<:>)\Rh;k?th(/\RfﬂR)>0,

@ Suppose A\* < 0 then,

_ )\Lht - h ()\L — UL)
hi

A" <O<=>)\/_ht—h1_(>\1_—ﬂL)<0,

But, the consistency relation on the water height implies

I :==Ath] — Arhy +TLh = Arhir — Aghg + Trhg.
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The HLLj scheme

Well-balanced version of the HLLj scheme
And we impose

/
— if I >0,
A= "
[
h—z if 1 <0
that satisfies
AL < AF < Ag.
Assume that h; and hg are positive and 2—2 #* Z—i The intermediate state W is given by
IfA\* >0 If \* <0
P )‘LCO‘L,Rﬁé b = oy — )\RCaL,R,E
0 (AR —AL) 0 (AR =)
_ Ax-B _ Ax-B
huLUp + ———— huL UpL + ———
—— AR— AL —— AR — AL
Ug ) hg , Ug = ) hé 5
Nk ur * Nk ur *
uo—h—Lh07 UO_E”O'

Assume that h; and hg are positive. For W| and Wk defining a smooth steady state the
intermediate states satisfy the well-balanced property.
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Positive and well-balanced version of the HLLj scheme

According
. (hy,T;) if A* <0,
(ho,g) = I; :k .
(hg,TR) ifA*>0

and
Arhg — ALh] = (Ar — AL) bt

wen can conclude that only one quantity among hj or hj can be negative. More
precisely, if h; < 0 then,

hg>0 = I >0 = A" >0 = hy=hg >0,
and if hf; < 0 then,

hf >0 = I <0 = N <0 = hy=nh] >0.
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Positive and well-balanced version of the HLLj scheme

To ensure the positivity of all intermediate water heights we will test the sign of

o by R Coun 8 d Fo=h
L= HLL—m an R = NHLL —

MGy, pB

(AR —AL)’

@ The case h~f > 0 and hN;; > 0 then,the intermediate states defined earlier

o The case hf <0 and h; >0 o The case h; >0 and h% < 0
then, we replace the equilibrium then, the equilibrium relations are
relations by the fact that the L* replaced by the fact that R*
intermediate state vanishes intermediate states vanishes

hz == 0, h?‘i’ = Oa
u; =0, up =0,
af =0, iy =0,

In each case we show that A\; < \* < A\
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